SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter
نویسنده
چکیده
This paper describes our sentiment analysis system which has been built for Sentiment Analysis in Twitter Task of SemEval-2016. We have used a Logistic Regression classifier with different groups of features. This system is an improvement to our previous system Lsislif in Semeval-2015 after removing some features and adding new features extracted from a new automatic constructed sentiment lexicon.
منابع مشابه
VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter
The aim of this paper is to produce a methodology for analyzing sentiments of selected Twitter messages, better known as Tweets. This project elaborates on two experiments carried out to analyze the sentiment of Tweets from SemEval-2016 Task 4 Subtask A and Subtask B. Our method is built from a simple unigram model baseline with three main feature enhancements incorporated into the model: 1) em...
متن کاملSteM at SemEval-2016 Task 4: Applying Active Learning to Improve Sentiment Classification
This paper describes our approach to the SemEval 2016 task 4, “Sentiment Analysis in Twitter”, where we participated in subtask A. Our system relies on AlchemyAPI and SentiWordNet to create 43 features based on which we select a feature subset as final representation. Active Learning then filters out noisy tweets from the provided training set, leaving a smaller set of only 900 tweets which we ...
متن کاملaueb.twitter.sentiment at SemEval-2016 Task 4: A Weighted Ensemble of SVMs for Twitter Sentiment Analysis
This paper describes the system with which we participated in SemEval-2016 Task 4 (Sentiment Analysis in Twitter) and specifically the Message Polarity Classification subtask. Our system is a weighted ensemble of two systems. The first one is based on a previous sentiment analysis system and uses manually crafted features. The second system of our ensemble uses features based on word embeddings...
متن کاملCICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings
This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictiona...
متن کاملPUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis
This paper describes a classification system that participated in SemEval-2016 Task 4: Sentiment Analysis in Twitter. The proposed approach competed in subtasks A, B, and C, which involved tweet polarity classification, tweet classification according to a two-point scale, and tweet classification according to a five-point scale. Our system is based on an ensemble consisting of Random Forests, S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016